Copied to
clipboard

G = C3xC32:7D4order 216 = 23·33

Direct product of C3 and C32:7D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xC32:7D4, C33:14D4, C62:11S3, C62:12C6, C6.28(S3xC6), C3:Dic3:6C6, (C3xC62):3C2, (C3xC6).61D6, C32:10(C3xD4), C32:12(C3:D4), (C32xC6).25C22, (C6xC3:S3):6C2, (C2xC3:S3):6C6, (C2xC6):6(C3xS3), C2.5(C6xC3:S3), C3:3(C3xC3:D4), (C2xC6):3(C3:S3), C6.26(C2xC3:S3), C22:3(C3xC3:S3), (C3xC6).33(C2xC6), (C3xC3:Dic3):8C2, SmallGroup(216,144)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xC32:7D4
C1C3C32C3xC6C32xC6C6xC3:S3 — C3xC32:7D4
C32C3xC6 — C3xC32:7D4
C1C6C2xC6

Generators and relations for C3xC32:7D4
 G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 360 in 136 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, D4, C32, C32, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, C3:D4, C3xD4, C33, C3xDic3, C3:Dic3, S3xC6, C2xC3:S3, C62, C62, C62, C3xC3:S3, C32xC6, C32xC6, C3xC3:D4, C32:7D4, C3xC3:Dic3, C6xC3:S3, C3xC62, C3xC32:7D4
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, C3xS3, C3:S3, C3:D4, C3xD4, S3xC6, C2xC3:S3, C3xC3:S3, C3xC3:D4, C32:7D4, C6xC3:S3, C3xC32:7D4

Smallest permutation representation of C3xC32:7D4
On 36 points
Generators in S36
(1 27 9)(2 28 10)(3 25 11)(4 26 12)(5 23 20)(6 24 17)(7 21 18)(8 22 19)(13 34 30)(14 35 31)(15 36 32)(16 33 29)
(1 16 7)(2 8 13)(3 14 5)(4 6 15)(9 29 18)(10 19 30)(11 31 20)(12 17 32)(21 27 33)(22 34 28)(23 25 35)(24 36 26)
(1 21 29)(2 30 22)(3 23 31)(4 32 24)(5 35 11)(6 12 36)(7 33 9)(8 10 34)(13 19 28)(14 25 20)(15 17 26)(16 27 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)(17 18)(19 20)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)(33 36)(34 35)

G:=sub<Sym(36)| (1,27,9)(2,28,10)(3,25,11)(4,26,12)(5,23,20)(6,24,17)(7,21,18)(8,22,19)(13,34,30)(14,35,31)(15,36,32)(16,33,29), (1,16,7)(2,8,13)(3,14,5)(4,6,15)(9,29,18)(10,19,30)(11,31,20)(12,17,32)(21,27,33)(22,34,28)(23,25,35)(24,36,26), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,11)(6,12,36)(7,33,9)(8,10,34)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)>;

G:=Group( (1,27,9)(2,28,10)(3,25,11)(4,26,12)(5,23,20)(6,24,17)(7,21,18)(8,22,19)(13,34,30)(14,35,31)(15,36,32)(16,33,29), (1,16,7)(2,8,13)(3,14,5)(4,6,15)(9,29,18)(10,19,30)(11,31,20)(12,17,32)(21,27,33)(22,34,28)(23,25,35)(24,36,26), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,11)(6,12,36)(7,33,9)(8,10,34)(13,19,28)(14,25,20)(15,17,26)(16,27,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35) );

G=PermutationGroup([[(1,27,9),(2,28,10),(3,25,11),(4,26,12),(5,23,20),(6,24,17),(7,21,18),(8,22,19),(13,34,30),(14,35,31),(15,36,32),(16,33,29)], [(1,16,7),(2,8,13),(3,14,5),(4,6,15),(9,29,18),(10,19,30),(11,31,20),(12,17,32),(21,27,33),(22,34,28),(23,25,35),(24,36,26)], [(1,21,29),(2,30,22),(3,23,31),(4,32,24),(5,35,11),(6,12,36),(7,33,9),(8,10,34),(13,19,28),(14,25,20),(15,17,26),(16,27,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16),(17,18),(19,20),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31),(33,36),(34,35)]])

C3xC32:7D4 is a maximal subgroup of   C3xS3xC3:D4  C62.91D6  C62.93D6  C62:23D6  C62.96D6  C62:24D6  C3xD4xC3:S3

63 conjugacy classes

class 1 2A2B2C3A3B3C···3N 4 6A6B6C···6AN6AO6AP12A12B
order1222333···34666···6661212
size11218112···218112···218181818

63 irreducible representations

dim1111111122222222
type+++++++
imageC1C2C2C2C3C6C6C6S3D4D6C3xS3C3:D4C3xD4S3xC6C3xC3:D4
kernelC3xC32:7D4C3xC3:Dic3C6xC3:S3C3xC62C32:7D4C3:Dic3C2xC3:S3C62C62C33C3xC6C2xC6C32C32C6C3
# reps11112222414882816

Matrix representation of C3xC32:7D4 in GL4(F13) generated by

9000
0900
0010
0001
,
9000
0300
0030
00129
,
1000
0100
0090
0013
,
0100
12000
0084
0075
,
0100
1000
0084
0075
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,3,0,0,0,0,3,12,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,9,1,0,0,0,3],[0,12,0,0,1,0,0,0,0,0,8,7,0,0,4,5],[0,1,0,0,1,0,0,0,0,0,8,7,0,0,4,5] >;

C3xC32:7D4 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_7D_4
% in TeX

G:=Group("C3xC3^2:7D4");
// GroupNames label

G:=SmallGroup(216,144);
// by ID

G=gap.SmallGroup(216,144);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,1444,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<